Proper and Improper Fractions

Proper fractions

A proper fraction is a fraction where the numerator is smaller than the denominator. Fractions prefer this and so we say they are "proper".

$$
\lg . \frac{3}{4}
$$

If the numerator is the same as the denominator or a multiple of the denominator, then you have a whole number.

$$
\operatorname{eg} \frac{4}{4}=1 \quad \text { or } \quad \frac{24}{4}=6
$$

Improper fractions

An improper fraction is one where the numerator is larger than the denominator.

$$
\operatorname{eg} \cdot \frac{4}{3}
$$

Mixed numbers

A mixed number is a combination of a whole number and a proper fraction.
We usually convert an improper fraction to a mixed number and then reduce or simplify the proper fraction.
1)

Each whole is divided into 4 pieces. So, the denominator is 4. There are 10 pieces coloured. So, the improper fraction in:

$$
\frac{10}{4}=2 \frac{2}{4}<\underset{\text { two a }}{\text { and }}
$$

two wholes two quarters/fourths.
2) $\frac{17}{3}=$? mixed number

Step 1: divide the numerator by the denominator. $17 \div 3=5 \mathrm{R} 2$

So, $5=$ wholes
$2=$ numerator of your fraction.
Answer: $\frac{17}{3}=5 \frac{2}{3} \quad\binom{$ You can't reduce }{$2 / 3}$.
3) $\frac{16}{4}=$?

Divide the numerator by the denominator.

$$
16 \div 4=4 \text { (no remainders) }
$$

So, $\frac{16}{4}=4$
4) $\frac{51}{7}=$?

Divide 51 by $7=7$ remainder 2

$$
\text { So, } \frac{51}{7}=7 \frac{2}{7}
$$

Have you noticed that you REALL 4 need to know your multiplication tables?

You won't have to do this as often but should know how to convert in the opposite direction.
$3 \frac{3}{4}=$? as an improper fraction.
Step 1. The denominator (4) stays the same.
Step 2. We know that each whole is made up of the denominator number. (Inthiscase $1=\frac{4}{4}$). So, multiply the whole number you have by the denominator you have.
Step 3. Add in the "extras" of your proper fraction (3 here)

$$
\begin{aligned}
3 \frac{3}{4} & =\frac{1}{4} \quad(\text { step } 1) \\
& =\frac{12}{4}+3 \text { wholes } \times 4=12(\text { step } 2) \\
& =\frac{12+3}{4} \quad \text { add in } \frac{3}{4} \quad(\text { step 3) } \\
& =\frac{15}{4} \leftarrow \text { final answer. } \\
\text { OR }\left(3 \frac{3}{4}\right. & \left.=(3 \times 4)+3=\frac{15}{4}\right)
\end{aligned}
$$

